Abstract

The 11S globulin cruciferin is the major storage protein in Brassicaceae/Cruciferae seeds and exists as a hexamer in its natural configuration. Arabidopsis thaliana cruciferin is composed of CRUA, CRUB and CRUC subunits. Wild type (WT) cruciferin and cruciferins composed only of identical CRUA, CRUB and CRUC subunits were examined for their ability to form and stabilize oil-in-water (o/w) emulsions. All proteins (0.9% at pH 7.4 and 2.0), except CRUC, formed stable canola oil or triolein emulsions with a dispersed phase volume fraction of 22–23%. A fine emulsion was formed by CRUB at pH 7.4 with droplet sizes of 6.8 and 8.6 μm for canola oil and triolein, respectively. The presence of 0.5 M NaCl reduced the level of adsorbed protein and protein load at the interface at pH 7.4, and resulted in emulsions that were less stable. Emulsions of CRUA and CRUB (pH 7.4, zero ionic strength, canola oil or triolein) had higher stability than emulsions with WT cruciferin up to 15 days after formation. CRUC formed a stable emulsion only at pH 2.0. The low solubility, low surface hydrophobicity and compact structure of the CRUC protein may contribute to its inferior emulsifying properties at neutral pH; however, acidic pH-induced dissociation of the hexameric assembly improved these properties. The abundance and exposure of hydrophobic residues in the hypervariable regions, extended loop regions, and solvent exposed surfaces of cruciferin are critical factors affecting o/w interface stabilization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.