Abstract

We previously shown that mutations in the connection (CN) subdomain of human immunodeficiency virus type 1 (HIV-1) subtype B reverse transcriptase (RT) increase 3'-azido-3'-deoxythymidine (AZT) resistance in the context of thymidine analog mutations (TAMs) by affecting the balance between polymerization and RNase H activity. To determine whether this balance affects drug resistance in other HIV-1 subtypes, recombinant subtype CRF01_AE was analyzed. Interestingly, CRF01_AE containing TAMs exhibited 64-fold higher AZT resistance relative to wild-type B, whereas AZT resistance of subtype B containing the same TAMs was 13-fold higher, which in turn correlated with higher levels of AZT-monophosphate (AZTMP) excision on both RNA and DNA templates. The high level of AZT resistance exhibited by CRF01_AE was primarily associated with the T400 residue in wild-type subtype AE CN subdomain. An A400T substitution in subtype B enhanced AZT resistance, increased AZTMP excision on both RNA and DNA templates, and reduced RNase H cleavage. Replacing the T400 residue in CRF01_AE with alanine restored AZT sensitivity and reduced AZTMP excision on both RNA and DNA templates, suggesting that the T400 residue increases AZT resistance in CRF01_AE at least in part by directly increasing the efficiency of AZTMP excision. These results show for the first time that CRF01_AE exhibits higher levels of AZT resistance in the presence of TAMs and that this resistance is primarily associated with T400. Our results also show that mixing the RT polymerase, CN, and RNase H domains from different subtypes can underestimate AZT resistance levels, and they emphasize the need to develop subtype-specific genotypic and phenotypic assays to provide more accurate estimates of clinical drug resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.