Abstract

Three stages of collapse and doming of the inner subsided block are recognized in the Miocene Kakeya cauldron. The mechanism of the first collapse is not clear, but the second and third are volcanic in origin. The second collapse was triggered by eruptions of silicic andesite lava flows and pyroclastic ejecta. The boundary fault between the subsided block and its surroundings is nearly vertical. The subsided block formed a distinct basin structure, and its marginal part was intensely deformed by faulting. The third collapse took place cylindrically, accompanied by voluminous eruptions of dacitic pyroclastic materials. The collapsed block formed a basin structure with a gently dipping marginal part. The doming of the inner subsided block was due to increase of pressure in a magma chamber.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.