Abstract

We introduce the radiative transfer postprocessing code Subsweep . The code is based on the method of transport sweeps, in which the exact solution to the scattering-less radiative transfer equation is computed in a single pass through the entire computational grid. The radiative transfer module is coupled to radiation chemistry, and chemical compositions as well as temperatures of the cells are evolved according to photon fluxes computed during radiative transfer. Subsweep extends the method of transport sweeps by incorporating sub-timesteps in a hierarchy of partial sweeps of the grid. This alleviates the need for a low, global timestep and as a result Subsweep is able to drastically reduce the amount of computation required for accurate integration of the coupled radiation chemistry equations. We succesfully apply the code to a number of physical tests such as the expansion of HII regions, the formation of shadows behind dense objects, and its behavior in the presence of periodic boundary conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.