Abstract

Little is known of long-term processes affecting microbial abundance in buried marine sediments. In collaboration with geochemists and sedimentologists involved in ODP Leg169S, we undertook a study of bacterial and viral abundance throughout the entire Holocene sediment section in Saanich Inlet, British Columbia, Canada. Sediments were sampled at 1.5-m intervals from the sediment surface down into Pleistocene sequences at depths of >100 m. Preparations of formalin-fixed sediment were stained with the nucleic acid stain Yo-Pro and bacteria and viruses were enumerated using epifluorescence microscopy. Viral presence was confirmed by electron microscopy. More widely spaced measurements of adenosine triphosphate (ATP) and the biogenic pore water gases H2, CH4 and CO were used as indices of microbial metabolic activity. Bacterial and viral abundances were high (>109 gdw−1) in these organic-rich sediments relative to oceanic areas, and were highly correlated, indicating a probable close functional dependence characteristic of predator–prey relations. The upper Holocene section showed a significant subsurface peak in microbial abundance that was correlated negatively with sediment organic matter content, but corresponded with biogenic gas accumulation. The interpretation of these and other significant trends is discussed in relation to the Holocene/late Pleistocene history of organic matter sedimentation and diagenetic processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.