Abstract

Purification of human platelet phospholipase A2 (PLA2) from a particulate fraction by ion-exchange chromatography at 4 degrees C yielded a single peak of enzyme activity, which catalyzed the hydrolysis of arachidonic acid from the 2-position of phosphatidylcholine (PtdCho) and phosphatidylethanolamine (PtdEtn). The activity toward PtdCho and that toward PtdEtn differed in stability during storage, pH optimum, Ca2+ requirement, and affinity for the substrate; however, each activity preferred phospholipid with arachidonate at the 2-position. The two activities appeared to be eluted as an aggregate in a single peak from the ion-exchange column. When the column was run at 22 degrees C, an additional PLA2 activity peak specific for PtdEtn was resolved from the original PLA2 peak. But when the particulate fraction was briefly sonicated in 0.1% octylglucoside before chromatography at 22 degrees C, a different PLA2 activity peak, specific for PtdCho, was obtained. Resolution of the two specific forms of PLA2 under different conditions probably resulted from selective solubilization of the aggregate. The specific PLA2 activities thus isolated were very labile, whereas those in the aggregate were relatively stable. These findings suggest that human platelets contain at least two substrate-specific forms of PLA2, one for PtdCho and another for PtdEtn.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.