Abstract

Nitric oxide synthase (NOS) catalyzes the formation of NO via a consecutive two-step reaction. In the first step, L-arginine (Arg) is converted to N-hydroxy-L-arginine (NOHA). In the second step, NOHA is further converted to citrulline and nitric oxide (NO). To assess the mechanistic differences between the two steps of the reaction, we have used resonance Raman spectroscopy combined with a homemade continuous-flow rapid solution mixer to study the structural properties of the metastable dioxygen-bound complexes of the oxygenase domain of inducible NOS (iNOSoxy). We identified the O-O stretching frequency of the substrate-free enzyme at 1133 cm-1. This frequency is insensitive to the presence of tetrahydrobiopterin, but it shifts to 1126 cm-1 upon binding of Arg, which we attribute to H-bonding interactions to the terminal oxygen atom of the heme iron-bound dioxygen. In contrast, the addition of NOHA to the enzyme did not bring about a shift in the frequency of the O-O stretching mode, because, unlike Arg, there is no H-bond associated with the terminal oxygen atom of the dioxygen. The substrate-specific H-bonding interactions play a critical role in determining the fate of the key peroxy intermediate. In the first step of the reaction, the H-bonds facilitate the rupture of the O-O bond, leading to the formation of the active ferryl species, which is essential for the oxidation of the Arg. On the other hand, in the second step of the reaction, the absence of the H-bonds prevents the premature O-O bond cleavage, such that the peroxy intermediate can perform a nucleophilic addition reaction to the substrate, NOHA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.