Abstract

Herein, we report a colloidal wet-chemical approach enabling control on dopant concentration and location in a nanocrystal host lattice. Growth-doping and nucleation-doping, driven by primary and tertiary amines, respectively, were identified as predominant doping mechanisms responsible for the introduction of nitrogen impurities in interstitial and substitutional sites in highly branched rutile TiO2 nanostructures. High-resolution X-ray photoelectron spectroscopy was used to distinguish the two nitrogen occupational lattice sites and, in combination with UV–vis absorption spectroscopy, to investigate the impact of the nitrogen impurities on the optoelectronic properties. The implementation of the nitrogen-doped titania nanostructures in photoelectrodes for water oxidation suggests that these atomically defined building blocks can function as a platform to investigate the impact of the nitrogen occupational sites on the photocatalytic properties. By deliberately choosing precursors and reaction conditions...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.