Abstract

Hematite pigment has a long history, but it cannot be used for ceramic application, because it must be thermally and chemically stable at high firing temperature when using a pigment in a glaze or ceramic body. Recently, through encapsulated systems, a new pigment with suitable thermal and chemical stability can be obtained by encapsulating hematite crystals into selected silica or zircon matrices. It means that nano-sized red hematite has been encapsulated into the protected phases. Transmission electron micrographs of hematite encapsulated into silica and zircon matrices by sol-gel method show spherical single crystals with diameter of about 5–10 nm. In order to optimize ceramic glaze formulations for application of the synthesized red inorganic nanocomposite inclusion pigment by sol-gel method, four different types of glazes (i.e., alkalis, borate, earth alkalis, and leaded glazes) have been tested. The results show that the substitution of a fraction of zircon by cristobalite in hematite-zircon pigment produces acceptable stability with red hue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.