Abstract

Using the quantum theory of atoms in molecules in combination with density functional theory, we investigate the charge densities of different cubane and hypercubane derivatives in which all the terminal hydrogen atoms of the title hydrocarbons are replaced by an equal number of substituents (F, Cl, Br, CH3, and NO2). The analysis of the charge densities of the bond, ring, and cage critical points indicates that these substituents have the ability to alter the charge density of the cubane skeleton, thereby enhancing the strain of its carbon–carbon bonds. Also, the change in the charge density as a function of the expansion and contraction of the cubane cage indicates that the persubstituted derivatives respond differently to the deformation of their carbon cages. A linear correlation between the one-bond nuclear spin–spin coupling constant 1J(13C13C) and the charge densities calculated at the bond critical points suggests the possibility of employing this NMR parameter for studying the effects of substituents in cage hydrocarbons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.