Abstract

Cinnamate derivatives show a variety of photo-induced reactions. Among them is trans-cis photoisomerization, which may involve the nonradiative decay (NRD) process. The extended multistate complete active space second-order perturbation (XMS-CASPT2) method was used in this study as a suitable theory for treating multireference electronic nature, which was frequently manifested in the photoisomerization process. The minimum energy paths of the trans-cis photoisomerization process of cinnamate derivatives were determined, and the activation energies were estimated using the resulting intrinsic reaction coordinate (IRC) paths. Natural orbital analysis revealed that the transition state's (TS) electronic structure is zwitterionic-like, elucidating the solvent and substituent effect on the energy barrier of photoisomerization paths. Furthermore, it was found that the charge on the pyramidalized carbon atom at the TS structure was strongly correlated with the activation energy barrier for the cinnamate derivatives. Thus, it seemingly provided a physical picture of the photoisomerization of cinnamates and was a good descriptor potentially applicable to molecular design for controlling the rate constant of the photoisomerization reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.