Abstract
A novel subspace-based channel shortening procedure is proposed based on the structure of the delayed autocorrelation matrices of the observation process. This purely second-order approach applies to overdetermined multiple-input multiple-output (MIMO) channels with independent, white sources. The channel may be sparse, and its length is assumed to be unknown. Through successive deflations, the problem can be transformed into an instantaneous blind source separation (BSS) problem which is simpler to solve using, for example, independent component analysis (ICA) techniques. The algorithm is computationally fast although it requires large input datasets. Such data can be acquired either through large numbers of sensors or by using increased data sampling rate. When not enough data are available, the method can still be used for reducing the channel length thus simplifying the problem for subsequent treatment
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.