Abstract
In this paper we study sub-semigroups of a finite or an infinite zero-divisor semigroup S determined by properties of the zero-divisor graph Γ ( S ) . We use these sub-semigroups to study the correspondence between zero-divisor semigroups and zero-divisor graphs. In particular, we discover a class of sub-semigroups of reduced semigroups and we study properties of sub-semigroups of finite or infinite semilattices with the least element. As an application, we provide a characterization of the graphs which are zero-divisor graphs of Boolean rings. We also study how local property of Γ ( S ) affects global property of the semigroup S, and we discover some interesting applications. In particular, we find that no finite or infinite two-star graph has a corresponding nil semigroup.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.