Abstract
We provide a self‐normalization for the sample autocovariances and autocorrelations of a linear, long‐memory time series with innovations that have either finite fourth moment or are heavy‐tailed with tail index 2 < α < 4. In the asymptotic distribution of the sample autocovariance there are three rates of convergence that depend on the interplay between the memory parameter d and α, and which consequently lead to three different limit distributions; for the sample autocorrelation the limit distribution only depends on d. We introduce a self‐normalized sample autocovariance statistic, which is computable without knowledge of α or d (or their relationship), and which converges to a non‐degenerate distribution. We also treat self‐normalization of the autocorrelations. The sampling distributions can then be approximated non‐parametrically by subsampling, as the corresponding asymptotic distribution is still parameter‐dependent. The subsampling‐based confidence intervals for the process autocovariances and autocorrelations are shown to have satisfactory empirical coverage rates in a simulation study. The impact of subsampling block size on the coverage is assessed. The methodology is further applied to the log‐squared returns of Merck stock.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.