Abstract
The detector pixel size can be a severe limitation in x-ray imaging of fine details in the human body. We demonstrate a method of using spectral x-ray measurements to image the spatial distribution of the linear attenuation coefficient on a length scale smaller than one pixel, based on the fact that interfaces parallel to the x-ray beam have a unique spectral response, which distinguishes them from homogeneous materials. We evaluate the method in a simulation study by simulating projection imaging of the border of an iodine insert with [Formula: see text] in a soft tissue phantom. The results show that the projected iodine profile can be recovered with an RMS resolution of 5% to 34% of the pixel size, using an ideal energy-resolving detector. We also validate this method in an experimental study by imaging an iodine insert in a polyethylene phantom using a photon-counting silicon-strip detector. The results show that abrupt and gradual transitions can be distinguished based on the transmitted x-ray spectrum, in good agreement with simulations. The demonstrated method may potentially be used for improving visualization of blood vessel boundaries, e.g., in acute stroke care.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.