Abstract

In aromatic systems, π–π interaction plays a central role in determining the stacking geometry and binding strength of molecules and thus a detailed microscopic understanding is highly desirable. Herein, by using scanning tunneling microscopy with submolecular resolution complemented with first-principles calculations based on density functional theory, we report the atomic-scale imaging of π–π interaction in nonplanar phthalocyanine (Pc) bilayers on different substrates, including graphite and Au(111) with weak interaction and Cu(111) with strong binding. We reveal that nonplanar Pc of the second layer on all substrates exhibits an in-plane rotation angle of 15° with a parallel offset of 1.19 A, which minimizes π–π repulsion. Interestingly, on Cu(111), it is found that the inequivalent charge distribution along with the alternating orientation of Pc molecules in the first layer creates a preferable anchoring site for Pc of the second layer, leading to the assembly of the √2 × √2R45° superstructure, consi...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.