Abstract

Polarization from active galactic nuclei is interpreted as a signpost of the role of magnetic fields in the launch and collimation of their relativistic radio jets. Here, we report the detection of a clear polarization signal from ALMA observations of the gravitationally lensed quasar PKS 1830−211 at submillimeter wavelengths (Band 9, 650 GHz). Applying a differential-polarimetry technique to the two compact lensed images of the quasar, we estimate a fractional polarization of ∼5% for one lensed image, while the other appears nearly unpolarized, which implies that the polarization activity varies on a timescale of a few weeks. With additional ALMA Band 7 and 8 (between 300–500 GHz) concomitant data, we constrain a Faraday rotation of a few 105 rad m−2. We also observe flux-density variability of ≲10% within one hour in Band 9. This work illustrates that a differential analysis can extract high-accuracy information (flux-density ratio and polarimetry) free of calibration issues from resolved sources in the submillimeter domain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.