Abstract

Kernel density estimation is a simple and effective method that lies at the heart of many important machine learning applications. Unfortunately, kernel methods scale poorly for large, high dimensional datasets. Approximate kernel density estimation has a prohibitively high memory and computation cost, especially in the streaming setting. Recent sampling algorithms for high dimensional densities can reduce the computation cost but cannot operate online, while streaming algorithms cannot handle high dimensional datasets due to the curse of dimensionality. We propose RACE, an efficient sketching algorithm for kernel density estimation on high-dimensional streaming data. RACE compresses a set of N high dimensional vectors into tiny arrays of integer counters. These arrays are sufficient to estimate the kernel density for a large class of kernels. Our one-pass sketch is simple to implement and comes with strong theoretical guarantees. We evaluate our method on real-world high-dimensional datasets and show that our sketch achieves 10x better compression compared to existing methods.1

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.