Abstract
Abstract This paper develops a subgraph random effects error components model for network data linear regression where the unit of observation is the node. In particular, it allows for link and triangle specific components, which serve as a basal model for modeling network effects. It then evaluates the potential effects of ignoring network effects in the estimation of the coefficients’ variance-covariance matrix. It also proposes consistent estimators of the variance components using quadratic forms and Lagrange Multiplier tests for evaluating the appropriate model of random components in networks. Monte Carlo simulations show that the tests have good performance in finite samples. It applies the proposed tests to the Call interbank market in Argentina.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.