Abstract

Myocardial adaptation to severe aortic stenosis (AS) is a complex process that involves myocardial fibrosis (MF) beyond cardiomyocyte hypertrophy. Perfusion impairment is believed to be involved in myocardial remodeling in chronic pressure overload. To describe morphological and ultrastructural myocardial changes at endomyocardial tissue sampling, possibly reflecting subendocardial ischemia, in a group of patients with severe AS referred to surgical aortic valve replacement (AVR), with no previous history of ischemic cardiomyopathy. One-hundred-fifty-eight patients (73 [68-77] years, 50% women) referred for surgical AVR because of severe symptomatic AS with preoperative clinical and imaging study and no previous history of ischemic cardiomyopathy. Intra-operative septal endomyocardial sampling was obtained in 129 patients. Tissue sections were stained with Masson´s Trichrome for MF quantification and periodic acid-Schiff (PAS) staining was performed to assess the presence of intracellular glycogen. Ultrastructure was analyzed through Transmission electron microscopy (TEM). MF totalized a median fraction of 11.90% (6.54-19.97%) of EMB, with highly prevalent perivascular involvement (95.3%). None of the samples had histological evidence of myocardial infarction. In 58 patients (45%) we found subendocardial groups of cardiomyocytes with cytoplasmatic enlargement, vacuolization and myofiber derangement, surrounded by extensive interstitial fibrosis. These cardiomyocytes were PAS positive, PAS-diastase resistant and Alcian Blue/PAS indicative of the presence of neutral intracellular glyco-saccharides. At TEM there were signs of cardiomyocyte degeneration with sarcomere disorganization and reduction, organelle rarefaction but no signs of intracellular specific accumulation. Almost half of the patients with severe AS referred for surgical AVR have histological and ultrastructural signs of subendocardial cardiomyocyte ischemic insult. It might be inferred that local perfusion imbalance contributes to myocardial remodeling and fibrosis in chronic pressure overload.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.