Abstract

The influence of confinement on biomolecule motion in glass channels of nanometric height has been investigated with fluorescence correlation spectroscopy (FCS). We measured intrachannel molecule diffusion time and concentration based on a single-component diffusion model as a function of molecule size to channel height (r(g)/h). Poly(ethylene glycol) (PEG) of 20 kDa and dextran of 40 kDa showed a reduction of their diffusion coefficients of almost 1 order of magnitude when nanochannel height approached probe diameter, whereas rhodamine 6G (Rh6G) was shown to be almost unaffected from confinement. Subdiffusive motion has been proven for flexible molecules in nanochannels, and deviations toward a square root dependence of mobility with time for confinement up to molecule size r(g)/h approximately 0.5 were registered. Diffusion coefficient time dependence has been evaluated and described with a model that accounts for diffusion time increase due to molecule rearrangements related to molecule flexibility and surface interactions dynamics. The evaluation of the subdiffusive mode and the key parameters extracted at the single-molecule level of partitioning, intrachannel diffusion time, desorption time, and binding probability at surfaces can be exploited for the engineering of bioanalytic nanodevices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.