Abstract

SUMMARY We conduct a parametric study on the subcritical propagation of an oil-filled, penny-shaped microcrack induced by the pressure increase caused by transformation of kerogen to oil. The excess oil pressure on the crack surfaces, and the subcritical crack propagation distance and duration, are obtained using a coupled model of fracture mechanics and kerogen–oil transformation kinetics. The numerical results show that the excess oil pressure and crack propagation distance/duration are significantly influenced by the temperature and elastic/fracture properties of the source rock, and the initial kerogen particle size. The subcritical propagation behaviour is relatively insensitive to the volume expansion rate associated with the conversion of kerogen to oil. Because the subcritical crack propagation rate is much faster than the kerogen–oil conversion rate, the crack propagation duration is primarily determined by the transformation kinetics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.