Abstract

In animal experiments, the indirect corticospinal tract (CST) system via cervical interneurons has been shown to mediate motor commands for online adjustment of visuomotor behaviors, such as target-reaching. However, it is still unclear whether the similar CST system functions to perform similar motor behaviors in humans. To clarify this, we investigated changes in motor-evoked potentials (MEPs) in the elbow muscles following transcranial magnetic stimulation, transcranial electrical stimulation, or cervicomedullary stimulation while participants executed target-reaching and switching movements. We found that the MEP, whether elicited cortically or subcortically, was modulated depending on the direction of the switching movements. MEP facilitation began around the onset of the switching activities in an agonist muscle. Furthermore, ulnar nerve-induced MEP facilitation, which could be mediated by presumed cervical interneuronal systems, also increased at the onset of MEP facilitation. In a patient with cortical hemianopsia who showed switching movements in the scotoma, the MEPs were facilitated just before the switching activities. Our findings suggested that CST excitation was flexibly tuned with the switching movement initiation, which could partly take place in the subcortical networks, including the presumed cervical interneuronal systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.