Abstract

The effects of unique profile antipsychotic drugs on dopamine D2 receptors and D2 receptor messenger RNA were assessed following subchronic administration in rats. Male, Sprague-Dawley rats were administered oral haloperidol, clozapine, metoclopramide or no drug for three weeks via their drinking water. Tissue from the medial nucleus accumbens and dorsolateral caudate-putamen was dissected and analyzed by Northern blot analysis for levels of dopamine D2 receptor messenger RNA and binding assays conducted with [3H]spiperone for dopamine D2 receptors. Haloperidol and metoclopramide, but not clozapine, significantly increased [3H]spiperone in the caudate-putamen, but not the nucleus accumbens. Clozapine significantly decreased D2 messenger RNA levels in the caudate-putamen and the nucleus accumbens, while metoclopramide and haloperidol had no significant effect in either brain region. The finding of decreased D2 receptor messenger RNA levels produced by subchronic clozapine may account for the lack of striatal D2 receptor up-regulation, which was robustly observed after subchronic haloperidol and metoclopramide. Furthermore, since haloperidol and metoclopramide have a high liability for motor side effects, the current results relate favorably to the low motor side effect profile of clozapine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.