Abstract

Sur7 is one of multiple proteins constituting MCC (membrane compartment of Can1 acting as an arginine/H+ symporter), a crucial membrane domain that can form punctuate eisosome spots on the plasma membrane and execute diverse functions in model yeast but remains poorly understood in filamentous fungi. Here, a Sur7 homolog bearing a typical SUR7 domain and four transmembrane domains was shown to localize in the conidial vesicles and enter vacuoles and appear sporadically on the periphery membrane during hyphal growth in the insect-pathogenic fungus Beauveria bassiana, implicating an involvement of Sur7 in cellular events linked to both plasma membrane and vacuoles. Deletion of sur7 resulted in reduced conidiation capacity and impaired conidial quality, which was featured by slower germination, attenuated virulence, and reduced carbohydrate epitopes (β-N-acetylglucosamine and sialic acids). Also, the hyphal cell walls of the deletion mutant were severely impaired due to ~ 70% reductions in chitin and neutral carbohydrate contents and a moderate increase in alkali-soluble carbohydrate content. Consequently, the deletion mutant became more sensitive to three cell wall perturbing chemicals (Congo red, calcofluor white, and SDS) and an antifungal drug (caspofungin) and surprisingly showed a hypersensitivity to oxidative stress of H2O2 and an increased sensitivity to osmotic stress of NaCl or sorbitol. Its hypersensitivity to H2O2 was associated with transcriptional repression of critical catalase genes required for H2O2 decomposition. These findings unveil that Sur7 takes part in both MCC/eisosome and vacuolar events and hence acts as a sustainer of conidiation capacity, cell wall integrity, multiple stress tolerance, and virulence in B. bassiana. Key points • Sur7 is a component of the crucial membrane domain MCC in Beauveria bassiana. • Sur7 localizes mainly in the vacuoles and sporadically on the periphery membrane. • Sur7 is required for cell wall integrity and has a pleiotropic effect on B. bassiana.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.