Abstract
Mass spectrometry-based protein methodologies have revolutionized the field of analytical biochemistry and enable the identification of hundreds to thousands of proteins in biological fluids, cell lines, and tissue. This methodology requires the initial separation of a protein constellation, and this has been successfully achieved using gel-based techniques, particularly that of fluorescence two-dimensional difference gel electrophoresis (2D-DIGE). However, given the complexity of the proteome, fractionation techniques may be required to optimize the detection of low-abundance proteins, which are often underrepresented but which may represent important players in health and disease. Such subcellular fractionation protocols typically utilize density-gradient centrifugation and have enabled the enrichment of crude microsomes, the cytosol, the plasmalemma, the nuclei, and the mitochondria. In this chapter, we describe the experimental steps involved in the enrichment of crude microsomes from the skeletal muscle using differential centrifugation and subsequent verification of enrichment by gel electrophoresis and immunoblotting, prior to comparative 2D-DIGE analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.