Abstract
The aim of this paper is to study sub-algebras of the Z/2-equivariant Steenrod algebra (for cohomology with coefficients in the constant Mackey functor F 2) which come from quotient Hopf algebroids of the Z/2-equivariant dual Steenrod algebra. In particular, we study the equivariant counterpart of profile functions, exhibit the equivariant analogues of the classical A(n) and E(n) and show that the Steenrod algebra is free as a module over these.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.