Abstract

AbstractThe ability of solar radiation to penetrate into a snow cover combined with the low thermal conductivity of snow can lead to a sub-surface temperature maximum. This elevated sub-surface temperature allows a layer of wet snow to form below the surface even on days when the air temperature remains sub-freezing. A high-resolution frequency-modulated continuous wave (FMCW) radar has been used to detect the onset of sub-surface melting in a seasonal snow cover. The experimental observation of sub-surface melting is shown to be in good agreement with the predictions of a one-dimensional mass- and energy-balance model. The effects of varying snow characteristics and solar extinction parameters on the sub-surface melt characteristics are investigated using model simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.