Abstract
Modern video codecs such as MPEG2, MPEG4-ASP and H.264 depend on sub-pixel motion estimation to optimise rate-distortion efficiency. Sub-pixel motion estimation is implemented within these standards using interpolated values at 1/2 or 1/4 pixel accuracy. By using these interpolated values, the residual energy for each predicted macroblock is reduced. However this leads to a significant increase in complexity at the encoder, especially for H.264, where the cost of an exhaustive set of macroblock segmentations needs to be estimated for optimal mode selection. This paper presents a novel scheme for sub-pixel motion estimation based on the whole-pixel SAD distribution. Both half-pixel and quarter-pixel searches are guided by a model-free estimation of the SAD surface using a two dimensional kernel method. While giving an equivalent rate distortion performance, this approach approximately halves the number of quarter-pixel search positions giving an overall speed up of approximately 10% compared to the EPZS quarter-pixel method (the state of the art H.264 optimised sub-pixel motion estimator).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.