Abstract

High-frequency (greater than 30 MHz) photoacoustic computed tomography (PACT) provides the opportunity to reveal finer details of biological tissues with high spatial resolution. To record photoacoustic signals above 30 MHz, sampling rates higher than 60 MHz are required according to the Nyquist sampling criterion. However, the highest sampling rates supported by existing PACT systems are typically within the range of 40-60 MHz. Herein, we propose a novel PACT imaging method based on sub-Nyquist sampling. The results of numerical simulation, phantom experiment, and in vivo experiment demonstrate that the proposed imaging method can achieve high-frequency PACT imaging with a relatively low sampling rate. An axial resolution of 22 μm is achieved with a 30-MHz transducer and a 41.67-MHz sampling rate. To the best of our knowledge, this is the highest axial resolution ever achieved in PACT based on a sampling rate of not greater than 60 MHz. This work is expected to provide a practical way for high-frequency PACT imaging with limited sampling rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.