Abstract

We present an interferometric spectral-domain optical coherence tomography microscopy setup to detect structural changes using interference of light reflected from different interfaces of the sample. We induce a reproducible nanometer-scale size change in dye-doped 10-µm polystyrene microspheres by the release of Stokes shift energy of dye molecules inside the microspheres, excited by a modulated 532-nm laser. The resulting optical path length difference was measured with a sensitivity of 0.4 p m / H z limited by photodetection noise, and reveals elastic as well as inelastic responses, which opens up possibilities for measuring the response of cell-sized biological objects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.