Abstract

Cereulide (CER) intoxication occurs at relatively high doses of 8 µg/kg body weight. Recent research demonstrated a wide prevalence of low concentrations of CER in rice and pasta dishes. However, the impact of exposure to low doses of CER has not been studied before. In this research, we investigated the effect of low concentrations of CER on the behavior of intestinal cells using the Caco-2 cell line. The MTT (mitochondrial 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and the SRB (sulforhodamine B) reactions were used to measure the mitochondrial activity and cellular protein content, respectively. Both assays showed that differentiated Caco-2 cells were sensitive to low concentrations of CER (in a MTT reaction of 1 ng/mL after three days of treatment; in an SRB reaction of 0.125 ng/mL after three days of treatment). Cell counts revealed that cells were released from the differentiated monolayer at 0.5 ng/mL of CER. Additionally, 0.5 and 2 ng/mL of CER increased the lactate presence in the cell culture medium. Proteomic data showed that CER at a concentration of 1 ng/mL led to a significant decrease in energy managing and H2O2 detoxification proteins and to an increase in cell death markers. This is amongst the first reports to describe the influence of sub-emetic concentrations of CER on a differentiated intestinal monolayer model showing that low doses may induce an altered enterocyte metabolism and membrane integrity.

Highlights

  • Cereulide (CER) is the main virulence factor of the emetic type of foodborne pathogen, Bacillus cereus

  • In order to determine the limit of CER toxicity, well-established assays for mitochondrial activity (MTT) and changes in protein content (SRB) of differentiated Caco-2 cells were evaluated after an extended, three-day exposure to low concentrations of CER (Figure 1A,B)

  • The SRB test appeared to be more sensitive than the MTT test to detect changes in the biological activity of differentiated Caco-2 cells. These findings are in agreement with the data of Keepers et al [30], who have shown that the SRB

Read more

Summary

Introduction

Cereulide (CER) is the main virulence factor of the emetic type of foodborne pathogen, Bacillus cereus. It is a heat-, protease- and pH-stable hydrophobic dodecadepsipeptide with a molecular mass of 1.2 kDa [1,2]. It comprises three repetitions of tetrapeptide motifs synthesized by nonribosomal peptide synthesis complexes [3,4]. The main clinical manifestation of CER intoxication is emesis. CER is referred to as an emetic toxin of B. cereus in contrast to the group of B. cereus diarrheal enterotoxins (hemolysin BL, non-hemolytic enterotoxin, cytotoxin K and some others less prevalent and putative toxins)

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.