Abstract
BackgroundLittle is known regarding the trafficking mechanisms of small molecules within plant cells. It remains to be established whether phytochemicals are transported by pathways similar to those used by proteins, or whether the expansion of metabolic pathways in plants was associated with the evolution of novel trafficking pathways. In this paper, we exploited the induction of green and yellow auto-fluorescent compounds in maize cultured cells by the P1 transcription factor to investigate their targeting to the cell wall and vacuole, respectively.ResultsWe investigated the accumulation and sub-cellular localization of the green and yellow auto-fluorescent compounds in maize BMS cells expressing the P1 transcription factor from an estradiol inducible promoter. We established that the yellow fluorescent compounds accumulate inside the vacuole in YFBs that resemble AVIs. The green fluorescent compounds accumulate initially in the cytoplasm in large spherical GFBs. Cells accumulating GFBs also contain electron-dense structures that accumulate initially in the ER and which later appear to fuse with the plasma membrane. Structures resembling the GFBs were also observed in the periplasmic space of plasmolized cells. Ultimately, the green fluorescence accumulates in the cell wall, in a process that is insensitive to the Golgi-disturbing agents BFA and monensin.ConclusionsOur results suggest the presence of at least two distinct trafficking pathways, one to the cell wall and the other to the vacuole, for different auto-fluorescent compounds induced by the same transcription factor in maize BMS cells. These compartments represent two of the major sites of accumulation of phenolic compounds characteristic of maize cells. The secretion of the green auto-fluorescent compounds occurs by a pathway that does not involve the TGN, suggesting that it is different from the secretion of most proteins, polysaccharides or epicuticular waxes. The yellow auto-fluorescent compounds accumulate in a vacuolar compartment, in structures that resemble the AVIs present in many cells accumulating anthocyanins. Together, our studies suggest that the accumulation of auto-fluorescent compounds can provide a powerful tool to dissect the trafficking of phytochemicals, knowledge necessary for the efficient engineering of plant metabolism.
Highlights
Little is known regarding the trafficking mechanisms of small molecules within plant cells
Accumulation of green and yellow auto-fluorescent bodies in maize BMS cells The large size of Black Mexican Sweet (BMS) maize cells provides a good opportunity to investigate the sub-cellular trafficking of phytochemicals
Because 35S::P1 cells in culture tend to suppress the expression of the P1 transgene after extended propagation, we investigated the trafficking and sub-cellular localization of the yellow- and green auto-fluorescent compounds in BMS cells expressing P1 from an estradiol inducible promoter (ERE::P1, [19])
Summary
Little is known regarding the trafficking mechanisms of small molecules within plant cells. We exploited the induction of green and yellow auto-fluorescent compounds in maize cultured cells by the P1 transcription factor to investigate their targeting to the cell wall and vacuole, respectively
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.