Abstract

The influence of the Co3O4 morphology on its redox behavior and catalytic performance in the CO oxidation reaction is studied. Three different Co3O4 morphologies were synthesized by precipitation and hydrothermal methods. TEM and SEM observations clearly show the different obtained morphologies: rods, wires and a mixture of plates and cubes. The textural properties depend on the morphology and the redox ones on the particle size. XRD analysis reveals a spinel structure in all solids with a preferential exposition of the [110] plane in the Co3O4 rods sample. This preferential exposition, along with its higher specific surface area provides the rods with more efficient oxygen storage capacity resulting in an excellent catalytic performance compared to the other two morphologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.