Abstract

We investigate the deep-UV optical emission and gain properties of AlxGa1−xN/AlyGa1−yN multiple quantum wells structures. These structures were grown by plasma-assisted molecular-beam epitaxy on 6H-SiC substrates, under a growth mode which promotes various degrees of band-structure potential fluctuations in the form of cluster-like features within the wells. The degree of inhomogeneities in these samples was determined by cathodoluminescence mapping. We measured the TE-polarized amplified spontaneous emission in the sample with cluster-like features and quantified the optical absorption/gain coefficients and gain spectra by the variable stripe length technique under ultrafast optical pumping. A maximum net modal gain of about 120 cm−1 is measured at 4.9 eV. On the other hand, we found that samples with homogeneous quantum wells lead to absorption. Numerical simulations are performed to support our experimental findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.