Abstract
Raman silicon lasers based on photonic crystal nanocavities with a threshold of several hundred microwatts for continuous-wave lasing have been realized. In particular, the threshold depends on the degree of confinement of the excitation light and the Raman scattering light in the two nanocavity modes. Here, we report lower threshold values for Raman silicon nanocavity lasers achieved by increasing the quality (Q) factors of the two cavity modes. By using an optimization method based on machine learning, we first increase the product of the two theoretical Q values by a factor of 17.0 compared to the conventional cavity. The experimental evaluation demonstrates that, on average, the actually achieved product is more than 2.5 times larger than that of the conventional cavity. The input-output characteristic of a Raman laser with a threshold of 90 nW is presented and the lowest threshold obtained in our experiments is 40 nW.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.