Abstract

Purpose: To present our initial experience with the implementation of commercially available independent monitor unit (MU) verification calculation software (RadCalc®) for dose verification for patients undergoing IMRT (serial tomotherapy) treatments planned using a commercially available IMRT planning system (CORVUS® 6.0) and delivered using the multileaf intensity modulating collimator (MIMiC) delivery device. Method and Materials: As a first step we defined a separate machine within the RadCalc® software to facilitate the dose verification process. At our facility, serial tomotherapy is used to deliver IMRT treatments. This is accomplished using the MIMiC delivery device attached to a Varian 600C linear accelerator producing a 6 MV photon beam. Dosimetric data for this treatment machine which included collimator and phantom scatter factors (Sc and Sp) and leaf transmission for the MIMiC were also incorporated in the RadCalc® Software. After the treatment plans are approved for treatment by the radiation oncologist a hybrid QA (quality assurance) plan is generated and delivered to an ion chamber and film placed in a rectangular solid water phantom of dimensions 30 cm × 30 cm × 22 cm. The phantom geometry was also defined in the RadCalc® software to facilitate dose calculation and comparison with the dose determined from ion‐chamber measurements. In this preliminary study a total of 13 patients undergoing IMRT treatment with the MIMiC were analyzed. Results: Initial results indicate a good agreement (within ±5%) between dose calculated from the hybrid plan, ion chamber measurements, and the dose calculated by the RadCalc® program. Conclusion: Based on initial results presented here we have set an action level of ±5% which will be reviewed and revised as necessary as we continue to acquire and analyze additional patient data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.