Abstract

Purpose:In this study, thermoacoustic pressure signals generated from a proton beam were simulated in water and currently within a skull phantom to investigate the sensitivity of radioacoustic CT imaging in the brain.Methods:Thermoacoustically generated pressure signals from a pulse pencil proton beam (12, 15, 20, and 27cm range) were simulated in water. These simulated pressure signal are detected using a (71) transducer array placed along the surface of a cylinder (30cm × 40cm) and rotated over 2π (in 2 degree increments), where the normal vector to the surface of each transducer intersects the isocenter of the scanner. Currently, a software skull phantom is positioned at isocenter, where the scattering, absorption and speed of dispersion of the thermoacoustic signal through a three layer cortical‐trabecular‐cortical structure is being simulated. Based on data obtained from the literature, the effects of acoustic attenuation and speed‐of‐sound (dispersion) will be applied within the 3D FBP algorithm to obtain dosimetric images.Results:Based on hydrophone detector specifications, a 0.5MHz bandwidth and 50dB re 1μPa per Hz^1/2, a 1.6cGy sensitivity at the Bragg peak was demonstrated while maintaining a 1.0 mm (FWHM) range resolution along the central axis of the beam. Utilizing this same information, the integral dose within the Bragg peak and distal edge compared to MC had a 2% (statistical) and 5% voxel‐based RMS at this same dose sensitivity. We plan to present preliminary data determining the range sensitivity for a head phantom for this scanner design and the feasibility of imaging the proton dose in patients with a brain tumor undergoing therapy.Conclusion:RACT scanner provides 3D dosimetric images with 1.6cGy (Bragg peak) sensitivity with 1mm range sensitivity. Simulations will be performed to determine feasibility to treat brain cancer patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.