Abstract
A 1 GHz surface transverse wave resonator on 36 degrees Y-cut quartz plate coated with organothiol-functionalized gold nanoparticle film has been studied as a chemical gas sensor. Considerable sensitivity of the resonant frequency to vapors of ethanol, methanol, chloroform, and acetic acid has been found. Owing to the high short-term stability of the oscillator built, the detection limit is in the low ppm range. The results qualitatively confirm previous results on the same film type obtained by conductivity measurements. In the present case, the conductivity effect resulting from variable separation of nanoparticles is accompanied with surface-attached mass of the absorbed gas. The film matrix exhibits considerable capacity to absorb large amounts of molecules at high gas concentrations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.