Abstract

Escherichia coli RecBCD helicase unwinds blunt-end duplex DNA to repair damaged DNA molecules in the homologous recombination pathway. Previous single-molecule experiments showed that RecBCD recognizes an 8 nt DNA sequence, χ, and lowers its unwinding rate afterward under saturating ATP condition. We have developed a single-molecule force-tethered particle motion (FTPM) method, which is modified from the conventional TPM method, and applied it to study RecBCD motion in detail. In the FTPM experiment, a stretching force is applied to the DNA-bead complex that suppresses the bead's Brownian motion, resulting in an improved spatial resolution at long DNA substrates. Based on the equipartition theorem, the mean-square displacement of the bead's Brownian motion measured by FTPM correlates linearly to DNA extension length with a predicted slope, circumventing the difficulties of conventional TPM experiments, such as nonlinearity and low resolution of long DNA substrates. The FTPM method offers the best resolution in the presence of only a small stretching force (0.20 pN). We used the FTPM method to investigate RecBCD helicase motion along 4.1 kb long χ-containing duplex DNA molecules, and observed that the translocation rate of RecBCD changes after the χ sequence under limited ATP concentrations. This suggests that χ recognition by RecBCD does not require saturating ATP conditions, contrary to what was previously reported.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.