Abstract

The composite structure of nano-porous anodic alumina (nano-PAA) coated with noble metal layer has been demonstrated to be one kind of high-sensitive surface-enhanced Raman scattering (SERS)-active substrate. However, the experimental investigations on influences of parameters were restricted by correlation between variables. And in relevant simulation studies, nano-tips at intersections of unit edges on the surface and the metal attaching to inside walls of nano-holes which are crucial for the enhancement of electric field were commonly idealized. To obtain the optimal structure of nano-PAA-Au array for SERS applications, numerical evaluations of the electric field distributions and intensities at hotspots were carried out on a proposed precise model. The influence of structure and excitation parameters which determined the electromagnetic enhancement have been systematically investigated. The numerical data shows that the intensity and distribution of surface electric field is evidently affected by both the characteristics of nano-tips and the metal attaching to the inside wall of holes. In addition, the designed substrate was synthesized accordingly and demonstrated to be higher sensitive with an achieved enhancement factor of 1.04 × 107. The study would be helpful in designing high-sensitive SERS-active substrates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.