Abstract
In this paper, the obtained experimental results concerning creation of bulk elementary excitations (BEEs) in isotopically pure liquid 4He at low temperatures ∼60 mK are discussed. Positive rotons’ (R+-rotons) creation by a pulsed heater was studied. Signals were recorded for the following quantum processes: quantum evaporation of 4He-atoms from the free liquid-helium surface by the BEEs of the liquid helium-II, and BEEs reflection from the free surface back into the bulk liquid. Typical signals are shown, and ratios of signal amplitudes are evaluated. For long heater pulses from 5 to 10 μs, appearance of the second atomic cloud consisting of evaporated 4He-atoms was observed in addition to the first atomic cloud. It is thought that the first atomic cloud of the evaporated helium atoms consists of very fast 4He-atoms with energies ∼35 K evaporated by positive rotons with the special energies ∼17 K (∼2ER∼2×8.6 K with ER representing the roton minimum energy) corresponding to the third non-dispersive Zakharenko wave. The second cloud of slower 4He-atoms was created by surface elementary excitations (SEEs or ripplons) possessing the special energies ∼7.15 K representing the binding energy. It was assumed that such SEEs can be created by phonons incoming to the liquid surface with special energies ∼6.2 K corresponding to the first non-dispersive Zakharenko wave, which can interact at the liquid surface with the same phonons already reflected from the surface for long heater pulses. Also, some pulsed-heater characteristics were studied in order to better understand the features of such heaters in low temperature experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.