Abstract

Dynamics of a chaotic spiking neuron model are being studied mathematically and experimentally. The Nonlinear Dynamic State neuron (NDS) is analysed to further understand the model and improve it. Chaos has many interesting properties such as sensitivity to initial conditions, space filling, control and synchronization. As suggested by biologists, these properties may be exploited and play vital role in carrying out computational tasks in human brain. The NDS model has some limitations; in thus paper the model is investigated to overcome some of these limitations in order to enhance the model. Therefore, the models parameters are tuned and the resulted dynamics are studied. Also, the discretization method of the model is considered. Moreover, a mathematical analysis is carried out to reveal the underlying dynamics of the model after tuning of its parameters. The results of the aforementioned methods revealed some facts regarding the NDS attractor and suggest the stabilization of a large number of unstable periodic orbits (UPOs) which might correspond to memories in phase space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.