Abstract

To investigate the interaction mechanism of PVA on the surface of HA, the molecular dynamics simulation was applied to simulate and calculate the binding energy between PVA of different monomers and HA crystallographic planes (001), (100) and (110), and then the mechanical properties and radial distribution function of the PVA/HA(110) system were calculated and analyzed. The results show that HA (110) has the higher binding energy with PVA than that of HA (001) and (100). The binding energy and the Young’s modulus of HA(110)/PVA system increase with the rising of PVA monomer number at the same crystallographic plane in a certain range, however, the descending trend takes place while monomers number reaching a certain value. This change trend is relating to the effective contact between two single components. By calculating the pair correlation function of HA(110)/PVA, there is a strong interaction between HA crystallographic plane (110) and PVA, it is mainly derived from the hydrogen bonds between O atoms of PVA and H atoms in HA crystal, besides, the ionic bonds interactions existing between OaandCa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.