Abstract
Four novel dmit complexes: [(C2H5)4N][Ni (dmit)2], [(C3H7)4N][Ni(dmit)2], [(C2H5)4N][Au(dmit)2] and [(C3H7)4N][Au(dmit)2], abbreviated as EtNi, PrNi, EtAu, and PrAu, were synthesized. The third-order nonlinear optical properties of them in acetonitrile solutions were investigated by using the Z-scan technique with 20 ps pulses width at 1064 nm. When the on-axis irradiance at focus I0 was 5.025 GW/cm2, the nonlinear refraction coefficient n2, the third-order nonlinear susceptibility χ(3), the molecular second-order hyperpolarizability γ of the four types of material were obtained with subject to Z-scan curves, and these indexes were with the magnitudes of 10−18 m2/W, 10−13 esu, and 10−31 esu, respectively. The nonlinear absorption coefficient β of Ni samples had the 10−12 m/W scale. The impact of different metals and cations on the third-order nonlinear optical properties of materials was analyzed. Through the derivation, the result suggests that these dmit complexes are promising candidates for applications to nonlinear optical devices manufacture in the near-infrared waveband.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.