Abstract
Zinc selenide (ZnSe) nanoparticles with the cubic zinc blende structure were successfully prepared by a solvothermal method without any surface-active agents. The as-obtained sample was characterized by X-ray diffraction, transmission electron microscopy (TEM), selected area electron diffraction, high-resolution TEM, and room-temperature photoluminescence (PL) techniques. It was proved that EDTA played a significant role during the synthesis of ZnSe nanoparticles. The room-temperature PL spectrum of the ZnSe nanoparticles showed a strong near-band-edge emission peak at 472 nm and a weak defect-related emission band in the range of 600–650 nm. Excitation-powerdependent PL spectrum of the ZnSe nanoparticles showed that the near-band-edge emission peak displayed an evident redshift with increasing the excitation power, and the corresponding energy shift might be as large as 51 meV. In addition, the integrated intensity of the near-band-edge emission peak increased with increasing the excitation power, which indicated the competition between the radiative recombination process and the nonradiative recombination process of photogenerated carriers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.