Abstract

Humic acid (HA) in water is the main precursor of disinfection by-products in the chlorination process of drinking water. In this study, an ultraviolet/persulfate (UV/PS) process, in a laboratory-scale system, is successful in the degradation of HA. The results showed that HA was significantly degraded (UV254 removal rate of ~ 89%) and partially mineralized (~ 62.5%) by UV/PS treatment at a PS dose of 0.4mM, pH of 7.12, and UV irradiation time of 160min. The trihalomethane formation potential (THMFP) was also significantly reduced (THMFP reduction of ~ 85.4%). A strong linear relationship was observed between UV254 and dissolved organic carbon. The removal rate of HA at low pH was better than that at high pH conditions, and the inhibition by Cl- slowed down after an initial increase, and the inhibition was weaker than HCO3-. By analyzing the fluorescence spectrum of two humic-like substances, the fluorescent compounds C1 and C2 in HA were significantly degraded, and the change in C1 and C2 concentration was correlated with the decrease of THMFP. The degradation of different fractions of natural organic matter in real-world water samples indicated that UV/PS has significant potential to decrease HA in water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.