Abstract
In simulation of nuclear reactor physics using the Monte Carlo neutron transport method on GPUs, the sorting of particles plays a significant role in performance of calculation. Traditionally, CPUs and GPUs are separated devices connected at low data transfer rate and high data transfer latency. Emerging computing chips tend to integrate CPUs and GPUs. One example is the Apple silicon chips with unified memory. Such unified memory chips have opened doors for new strategies of collaboration between CPUs and GPUs for Monte Carlo neutron transport. Sorting particles on CPU and transport on GPU is an example of such new strategy, which has been suffering the high CPU-GPU data transfer latency on the traditional devices with separated CPU and GPU. The finding is that for the Apple M2 max and M3 max chip, sorting on CPU leads to better performance per power than sorting on GPU for the ExaSMR whole core benchmark problems and the HTR-10 high temperature gas reactor fuel pebble problem. The partially sorted particle order has been identified to contribute to the higher performance with CPU sort than GPU. The in-house code using both CPU and GPU achieves 7.6 times (M3 max) power efficiency that of OpenMC on CPU for ExaSMR whole core benchmark with depleted fuel, and 130 times (M3 max) for HTR-10 fuel pebble benchmark with depleted fuel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.