Abstract

In the process of curved surface polishing and buffing, the tools have to be compressed on the workpiece and moved to wear the surface, so the normal force and tangential feed movements should be provided and controlled synchronously. It is a typical kind of compliant control, which would most likely be done under the hybrid motion/force control policy. Although its related theory is already almost perfect, this method could seldom be used in the process of curved surface polishing and buffing, if ever, for it is always not easy to orthogonalize force control space from movement control space. In this paper, a force control subsystem is developed and fixed on a computer numerical control (CNC) lathe to control the normal force independently, and the normal force control space is orthogonalized from the feed movement control space by geometry defining for aspheric surface polishing. Furthermore, the orthogonalization in the domain of time is taken to make the force control not to interpolate with the displacement control of the feed movements. Experiments in controlling and polishing the normal force show that the hybrid motion/force control policy could be used in the process of aspheric surface polishing and buffing by keeping the normal force control and feed movement control independently in both domains of space and time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.