Abstract

Star sensors are indispensable spatial measurement sensors for high-resolution earth observation and astronomical observations, and the demand for high measurement accuracy of satellite sensors continues to increase; thus, the star sensor optical machine adjustment error cannot be ignored. The commonly used installation error correction method cannot solely meet the precision analysis requirements. In this paper, the relationship between the optical machine installation and the star sensor measurement error is analyzed, and several common adjustment error correction methods are compared. An adjustment method for optical machines is proposed to meet the requirements of very high precision star sensors. The assembly precision requirements of the investigated very high precision star sensor are analyzed considering the whole machine, and then the optical components are controlled through optical precision adjustments to satisfy the precision requirements. Finally, through the complete machine calibration, the star sensor precision adjustment for an optical machine structure is verified. This method meets the requirements of very high precision sensors and is suitable for the precision adjustment of optical machine structures, which is of practical significance to improve the precision of star sensors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.